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Abstract

Shuttle derivatives have been under study by the National Aeronautics
and Space Administration (NASA) for a number of years. With Space
Station Freedom and the Lunar/Mars Initiative established as national
objectives, the demand for access to Earth orbit is accelerating.

These objectives have resulted in efforts to address additional launch
requirements that must be met as we approach the turn of the century.
Among the top level requirements are increasel safety, higher
reliability, lower cost, and the need for heavy lift launch capability.
To satisfy these requirements, some of the largest technology demands
will be placed upon the propulsion systems. This paper will present
Shuttle derived manned concepts and will discuss the associated
propulsion issues which arise from the top level requirements . These
concepts are presented in terms of an overall architecture which can be
achieved with modest up-front development.

Introduction

Space Shuttle derivative studies conducted over the past decade have
primarily emphasized cargo vehicles. Shuttle Evolution assessments
initiated in 1988 are attempting to address the corresponding issues
for manned transportation systems. This paper will discuss some
Shuttle derivatives with particular application to manned missions,
though cargo delivery will be addressed in order to describe an
architectural solution. Consideration of all three fundamental
Shuttle hardware elements, the External Tank (ET), boosters, and
Orbiter is essential to the evolution of an architecture which will

meet long term requirements.

The primary goals for the next manned transportation system are to
achieve increased reliability and safety, lower operational costs,
and increased operational capability. As historically demonstrated
throughout the aircraft and aerospace industry, such needs can be
satisfied efficiently by introducing block upgrades to the elements
of the system which have operational shortcomings. Shuttle
operational experience has identified one of the prominent elements
influencing reliability, safety, and cost to be the vehicle propulsion
systems. The challenge of meeting the goals for the next generation
systems will impose direct requirements upon the technologies and
philosophy to be applied to development of new and/or modified
propulsion systems. These requirements, to a large extent, will

be imposed on both the manned and unmanned transportation system

elements.
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1aunch Requirements

The civilian space requirements are formulated in the Civil Needs
Data Base (reference 1) and are augmented by the requirements
postulated in the Human Exploration Study performed by NASA in the
Fall of 1989 (reference 2). Although preliminary, these sources
enable determination of the fundamental launch requirements. The
deliverables can be broadly categorized into the transportation of

personnel, hardware, and propellant. :

Extending human presence in space vill require a considerable increase
{n the crew rotation capability beyond the present maximum of 70 crew
pembers per year. This rate is based upon a Shuttle capability of 14
f1ights per year and 2 crew/5 passengers per flight. Projected
requirements approach a rotation rate of 90 passengers per year in the
2010 time period with a Lunar/Mars initiative (figure 1). 1Increasing
the crew capacity of the Shuttle to 10 (2 crew/8 passengers) is
considered a viable option and becomes a basic requirement for the
Shuttle derived system described in this report.

Requirements for cargo delivery must be examined for both hardware

and propellant delivery since the two payload types can result in
different delivery systems. For a typical Lunar mission, based on

the requirements in reference 2, the total system mass in low Earth
orbit (LEO) is on the order of 450K 1bs for an aerobraked, fully
fueled LOX/LH2 transfer system. The capability for a direct launch,
Lunar mission is highly desirable for an early Lunar program and

would also enable reasonable means of initiating more aggressive
missions (e.g. Mars). This goal establishes an upper, 1ift capability
requirement of 450K 1bs on the derived launch system. The Lunar
mission LEO mass of 450K lbs breaks out into 300K 1bs of required
propellant and 150K ibs of hardware. These masses are representative
of re-supply requirements for hardware and propellant for projected
Lunar missions. Once the reusable, space based hardware is in place,
however, propellant will become the dominant commodity. Consideration
of these projected lift requirements has led to study of modular,
heavy-lift transportation systems with payload capabilities up to

450K 1lbs.

candidate Evolution Strategy

To address the goals of lover operational costs and increased capability
for the next manned transportation system, an evolutionary strategy has
been proposed which utilizes Shuttle derived hardware elements and draws
upon the lessons of Shuttle operational experience (reference 3). The
basic elements comprising the evolutionary architecture are: 1) an
External Tank (ET) derived core stage, 2) a liquid rocket booster {LRB)
system, and 3) a Block-II orbiter lacking the main propulsion system.

A core stage consisting of a modified ET with an integrated main
propulsion systea has been previously studied (references 4,5).

Figure 2 illustrates a candidate concept which is configured with three
Space Shuttle Main Engines (SSME) and an optional propulsion return
podule. Standard SSMEs, to be operated at 100 percent thrust levels,
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were baselined in this design {n consideration of the planned
improvements and the extensive operating experience and reliability
which will have been achieved by the time the evolved systems become
operatiocnal. To provide capability for the orbital insertion and
maneuvering requirements typical of propellant delivery missions,
provision is also made for a separate orbital maneuvering/reaction
control system. The derivative concepts under consideration are
intended to remain flexible to the incorporation of new, low cost
propulsion systems which become available.

Based upon studies performed in 1988-89 (references 6,7), a new LOX/LH2
liquid rocket booster (LRB) system is a favored candidate for the
evolution architecture. With the LRB concept shown in figure 3, the
system’s payload capability to LEO can be extended to 65~70K 1lbs. Among
the many desirable attributes of this system are common propellant and
engine systems, potential redundancy for engine out, abort options,
environmentally clean exhaust, improved ground processing and safety,
and growth potential. Additionally, the LRB has considerable synergism
with heavy-1lift launch vehicle concepts and with alternate access
options such as the Personnel Launch System (PLS). The low cost,
reliable propulsion systems developed for the LRBs may also have
application to long-term evolution concepts of a "Shuttle~II" system

incorporating fly-back boosters.

To address the requirement for increased crew capacity, a "Block-II"
Orbiter is proposed with an enlarged crew compartment designed to
accommodate a crew of ten. Removal of the main propulsion system from
the Orbiter, enabled with a core stage concept, is the next major
modification which offers several advantages. First, it separates the
launch function from the spacecraft, with an associated reduction in
vehicle complexity. Second, it provides the potential for increased
operational capability. The available volume from removal of the
propulsion system could house additional orbital maneuvering system
propellant and the Orbiter weight reduction could translate into down
payload capability. Additional enhancements which have been defined in
recent Shuttle Evolution studies are included in the "Block-II" concept.
These enhancements address a variety of vehicle subsystems and are
designed to achieve the top level transportation systenm goals. The
"Block-II" Orbiter concept is illustrated in figure 4.

The complete, Shuttle derived launch vehicle concept is depicted in
figure 5 along with the estimated performance capability which results
from enhancement weight changes. Performance capability for the derived
Orbiter concept, however, is not considered the primary goal. 1If it is
assumed that cargo delivery will be performed to a large extent by
unmanned launch systems, performance capability can be traded for
increased margins enabling the “Block-II" Orbiter to emphasize enhanced
Crew capability and on-orbit operations.

The described modifications to the Shuttle elements produce a manned
transportation system which offers flexible architecture options.
Elements from this system can be used to provide alternate access with

a Personnel Launch System as well as substantial heavy-lift payload
delivery with cargo and propellant launch vehicles. Modular, heavy-lift
launch vehicle concepts incorporating a stretched core stage and 6-8
LRBs can be configured to meet a single launch Lunar mission cargo
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requirement of 450K lbs. This vehicle can satisfy Lunar mission needs
with minimum required on-orbit assembly and check-out and also provides
reasonable capability for initiation of a Mars program. The overall
evolution strategy requires no technology breakthroughs and is capable
of meeting a wide range of requirements well into the next century. An
illustration of the fundamental architecture is presented in figure 6.

System Requirements

Achieving the top level goals of increased reliability and safety, and
lower operational costs for the next space transportation systems will
require that an integrated systems engineering approach be employed
throughout the design. The fundamental requirements placed upon the
vehicle subsystems must be derived to cptimize the overall system goals.
With the substantial cost which will be associated with future systenms
and payloads, the reliability expectations for unmanned cargo vehicles
have become as demanding as for the manned vehicles. In order to assess
how the requirements for these vehicles differ, the subject of

man rating must be addressed.

A man-rated system is defined to be one for which all elements are
designed with the highest possible reliability, including the required
escape system or safe haven. The philoscpny applied to these systems
emphasizes simple designs whenever possible and the use of only proven
technology. Where application of new technologies appears beneficial,
technology development programs should precede in order to evaluate
reliability. A basic set of guidelines has been established which
constitute design criteria for the man-rating of space systems
(reference 8). The design emphasis prescribed for the system generally
dictates the extent to which these guidelines are applied (figure 7).

A summary of the man rating design guidelines is presented in figure 8.

One of the foremost criteria unique to man-rated systems is the
requirement for a crew escape system. Design studies being conducted
within NASA are evaluating several approaches for ensuring crew safety
in the next manned space vehicles. Crew escape options under
consideration range from basic ejection concepts to intricate crew
escape modules designed to survive the most catastrophic failure.
Ipplicit in the requirement for crew escape provisions is a
corresponding requiremeat for fault detection capability. Accurate
and reliable means for sensing and isolating critical hazards is
fundamental to crew safety and abort flexibility and is an essential
requirement applicable to all critical systems for man-rated vehicles.

Wwith regard to vehicle propulsion systems, an issue which arises
specifically from man-rating considerations is the requirements on
engine throttling capability imposed for ascent g-limiting and abort
criteria. Engine throttling requirements need to be evaluated and set
from a vehicle-level assessment of capability versus system complexity.
Imposing throttling constraints based upon propulsion systen
considerations alone may not properly address the top level goals for
the vehicle. Another issue with implications to engine throttling is
the desire for engine-out capability. This approach to improving
overall reliability will introduce a minimum throttle-up requirement
upon the propulsion system. Fundamental to the engine-out design
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philosophy is an assumed low probability of catastrophic engine failure.
This places a basic requirement on the engine design to emphasize benign
failure modes, in which other elements are not damaged by a fajlure, to
the greatest extent possible. Approaches to engine design which
minimize the potential for catastrophic failures have been identified
from evaluation of historical engine failures (reference 9).

In consideration of these many critical functions to be performed
through propulsion system throttling, minimizing the failure potential
of the throttling function in itself will be of utmost importance.

The remaining propulsion issues address the top-level goals of high
reliability and low cost and are considered to be equally as important
for unmanned systems as for manned systenms. Ensuring high reliability
for the next transportation systems may favor new approaches to
propulsion system design. An example of one such approach is integrated
system designs with sharing of components (reference 10). New and
innovative design approaches need to be studied to substantiate their
benefit potential. Regardless of the design approach, however, there
are common propulsion requirements which can be discussed. The system
and its components will be required to be fault tolerant. Another basic
requirement will be the need for a comprehensive test program designed
to verify functional reliability and establish system failure limits.
The system’s limitations and safety margins should be determined through
off-limits testing including tests-to-failure to demonstrate the failure
modes and effects. The capability for on-board, automated check-cut and
verification is also a desirable provision of future propulsion systems.
In general, a requirement for some degree of propulsion system health
monitoring and control will need to be specified.

In consideration of the lessons learned through Shuttle operational
experience, a clear requirement for future propulsion systems will be
improved maintainability and minimized hazardous operations. As shown
in figure 9, the Shuttle’s main propulsion system is responsible for a
significant percentage of the Shuttle’s operational processing time.
Emphasis placed upon simplicity and accessibility during the design
process can translate directly to reduced propulsion system operational
costs. A summary of the issues and requirements identified for next
generation propulsion systems is presented in figqure 10.

Conclusion

An architectural strategy which utilizes Shuttle derived elerments and a
new LRB system appears a viable approach to achieving the goals of
higher reliability, lower operational costs, and increased capability
for the next manned transportation system. Evolution with a "Block-I1"
system offers the potential benefits of reduced risk and lower up~-front
development costs. The foreseen requirements for vehicle propulsion
systens predominantly address the need for fault tolerance and health
monitoring capability. High reliability is an expectation for both
manned and unmanned systems. Specific requirements for propulsion
throttling capability may arise for manned vehicles and will need to be
derived on the basis of the vehicle requirements.
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EVOLVING REQUIREMENTS

« EXPANDED HUMAN
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Figure 1
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PRESENTATION 1.3.2

SHUTTLE DERIVATIVES - UNMANNED
AND
BOOSTER PROPULSION - LIQUIDS/HYBRIDS
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